
Solvent-Free Synthesis of
Benzo[a]pyrene 7,8-Diol 9,10-Epoxide
Adducts at the N2-Position of
Deoxyguanosine
Andagar R. Ramesha, Heiko Kroth, and Donald M. Jerina*,†

Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and DigestiVe and
Kidney Diseases, The National Institutes of Health, Bethesda, Maryland 20892

dmjerina@nih.goV

Received November 22, 2000

ABSTRACT

The first solid-state (or solvent-free) synthesis of protected deoxyguanosine (dG) adducts of benzo[a]pyrene diol epoxides at room temperature
is reported. Whereas dG adducts derived from cis- and trans-opening of (±)-7â,8r-dihydroxy-9â,10â-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene
(DE-1 1) are formed as a 1:1 mixture, the direct opening of the diastereomeric (±)-7â,8r-dihydroxy-9r,10r-epoxy-7,8,9,10-tetrahydrobenzo[a]-
pyrene (DE-2, 2) produced a 15:85 ratio favoring the trans-opened dG adduct 7.

Polycyclic aromatic hydrocarbons (PAH) are ubiquitous
environmental pollutants which are formed during incomplete
combustion processes and exert their mutagenic and carci-
nogenic activity upon metabolic activation to electrophilic
reactive metabolites.1 Benzo[a]pyrene (B[a]P), a typical and
widely studied PAH, is metabolized to bay-region diol
epoxides (DE) which account for most if not all of its
carcinogenic activity.2,3 These DE are metabolically formed
as a pair of diastereomers in which the benzylic hydroxyl

group and epoxide oxygen are eithercis (DE-1) ortrans(DE-
2). In the case of B[a]P, the (R,S,S,R)-7,8-diol 9,10-epoxide-2
enantiomer is highly tumorigenic4 and selectively binds to
the exocyclic amino group of dG residues in DNA to form
stable,trans-openedN2-dG adducts.5 Because of the impor-
tance of these DNA adducts in understanding how the PAH
induce cancer, there has been considerable interest in the
synthesis of oligonucleotides containingN2-dG adducts for
the study of their conformational6 and biological properties.7-9

The synthesis of oligonucleotides containingN2-dG ad-
ducts of the PAH has been achieved by direct reaction10 of
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D., Bartsch, H., Eds.; IARC Scientific Publications: Lyon, France, 1994;
pp 107-129.

(4) Buening, M. K.; Wislocki, P. G.; Levin, W.; Yagi, H.; Thakker, D.
R.; Akagi, H.; Koreeda, M.; Jerina, D. M.; Conney, A. H.Proc. Natl. Acad.
Sci. U.S.A.1978,75, 5358.

(5) (a) Cheng, S. C.; Hilton, B. D.; Roman, J. M.; Dipple, A.Chem.
Res. Toxicol.1989,2, 334. (b) Sayer, J. M.; Chadha, A.; Agarwal, S. K.;
Yeh, H. J.; Yagi, H.; Jerina, D. M.J. Org. Chem.1991,56, 20.

(6) Geacintov, N. E.; Cosman, M.; Hingerty, B. E.; Amin, S.; Broyde,
S.; Patel, D. J.Chem. Res. Toxicol.1997,10, 111.

(7) Custer, L.; Zajc, B.; Sayer, J. M.; Cullinane, C.; Phillips, D. R.; Cheh,
A. M.; Jerina, D. M.; Bohr, V. A.; Mazur, S. J.Biochemistry1999,38,
569.

(8) Hess, M. T.; Gunz, D.; Luneva, N.; Geacintov, N. E.; Naegeli, H.
Mol. Cell. Biol. 1997,17, 7069.

ORGANIC
LETTERS

2001
Vol. 3, No. 4

531-533

10.1021/ol0003580 This article not subject to U.S. Copyright. Published 2001 by the American Chemical Society
Published on Web 01/19/2001



the DE with a short oligonucleotide typically containing a
single dG, by postoligomerization modification of an oligo-
nucleotide containing a reactive dG derivative,11 or by a total
synthetic approach employing an adduct phosphoramidite.7,12

Although the total synthetic approach requires more steps,
it generally provides a more easily purified product mixture
and is more flexible in terms of sequence.

Solvent-free reactions so far have been predominately used
in industrial gas-phase processes or polymerizations. How-
ever, a recent review13 showed that a variety of chemical
reactions can be performed under solvent-free conditions.
Encouraged by this review, by a recent report of solvent-
free addition of Me3SiN3 to epoxides,14 and by our present
observation that dodecylamine undergoescis-addition to
9,10-epoxy-7,8,9,10-tetrahydro B[a]P at C-10 (40% yield)
in the absence of solvent (1H NMR [CDCl3, 300 MHz] H10

δ 5.71 and H9 4.16 withJ9a,10e) 4.7,J8e,9a) 3.3, andJ8a,9a

) 12.1 Hz), we investigated the use of solid-state conditions
to prepare dG adducts. In the present report, we describe
for the first time an efficientsolVent-freesynthesis of
protectedN2-dG adducts of B[a]P, which are formed bycis-
andtrans-opening of both B[a]P DE-115 (1) and B[a]P DE-
215 (2) at C-10.

The key step in our synthesis is the direct opening of the
DE’s with O6-allyl-3′,5′-di-O-(tert-butyldimethysilyl)-2′-
deoxyguanosine (3)16 in a solid-state reaction at rt overnight
to yield a mixture ofcis- andtrans-openedN2-dG adducts
(Scheme 1).17 The reaction products and yields are sum-

marized in Table 1. Whereas the reaction of1 with 3 resulted
in a 1:1 mixture of thecis- andtrans-openedN2-dG adducts

4 and5 (45% combined yield after acetylation), the reaction
of 2 with 3 led to the formation of the correspondingcis-
andtrans-openedN2-dG adducts6 and7 in a ratio of 15:85
(54% combined yield after acetylation). In contrast to the
solvent-free reaction, direct opening of1 or 2 by 3 in DMA12a

required heating at 90-100 °C for 2 h. Although both
procedures gave comparable overall yields for each of the
DE’s, product ratios differed dramatically. Under both
reaction conditions,1 produced an aproximately 1:1 ratio
of cis:transadducts4 and 5, respectively. In contrast, the
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then acetylated overnight with acetic anhydride in pyridine containing
catalytic amounts of DMAP. Evaporation of the solvent followed by
chromatography on silica using CH2Cl2-MeOH (98:2) afforded the
acetylatedcis- andtrans-N2-dG adducts6 (6.8 mg) and7 (38.4 mg) (54%
combined yield). All compounds gave satisfactory1H NMR spectral and
high-resolution mass spectral data which were in accord with the published
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Scheme 1a

a (i) Solid state; (ii) HPLC; (iii) Ac2O, DMAP, pyridine.

Table 1. Solvent-Free Synthesis ofcis- andtrans-N2-dG
Adducts as Acetates

epoxide nucleoside % yield cis:trans ratio

1 3 45 50:50 (4:5)
2 3 54 15:85 (6:7)
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relative percentage oftransadduct7 increased from 40% in
DMA to 85% in the absence of solvent. The remarkable
trans-selectivity for the solid-state reaction of B[a]P DE-2
is reminiscent of the high percentage oftrans-opened tetraol
product obtained from2 relative to 1 on acid-catalyzed
solvolysis.18 Clearly, the 7- and 8-hydroxyl groups in1 or 2
play a dominant role since the tetrahydro B[a]P 9,10-epoxide
gave allcis-addition with a simple alkylamine. Under both
reaction conditions,1 and2 failed to react with 3′,5′-di-O-
(tert-butyldimethysilyl)-2′-deoxyguanosine. TheO6-allyl pro-
tecting group presumably enhances the nucleophilicity of the
N2-amino group of the dG building block3. Our attempts to
prepare the correspondingcis- and trans-openedN6-dA
adducts of B[a]P DE-1 and DE-2 in solid-state reactions of
3′,5′-di-O-(tert-butyldimethylsilyl)-2′-deoxyadenosine with
the DE’s resulted in very poor yields (∼5%) of the desired
products as was also the case in solvent.12a

TheN2-dG adducts obtained after the adduct coupling step

were separated into their diastereomeric mixtures ofcis- and
trans-opened isomers prior to acetylation as described.12a

After blocking of the secondary hydroxyl groups by acety-
lation, the diastereomericN2-dG adducts4, 5, 6, and7 can
be easily transformed into their corresponding phosphora-
midites by standard procedures for incorporation into oli-
gonucleotides.19

In conclusion, we have found the solvent-free synthesis
of thecis- andtrans-openedN2-dG adducts of1 and2 to be
more convenient than heating in DMA and to proceed in
comparable yields. The hightrans-selectivity of the solvent-
free reaction for opening of2 makes this reaction very
attractive for the large scale synthesis of the corresponding
trans-N2-dG adducts needed for structural and biological
studies.
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